Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rui-Qin Fang, ${ }^{a}$ Xian-Ming
 Zhang, ${ }^{\text {a }}$ Hai-Shun Wu^{a} and Seik Weng $\mathbf{N g}^{\mathbf{a}, \mathrm{b}_{*}}$

${ }^{\mathrm{a}}$ School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.059$
$w R$ factor $=0.186$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetraaquabis(4-pyridylthioacetato)copper(II)

The Cu atom in the zwitterionic title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{6}{ }^{-}\right.\right.$ $\left.\left.\mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, lies on a center of symmetry. It is linked to the pyridyl N atoms of two anionic groups and to four water molecules in an octahedral arrangement. The compound is isostructural with the Ni analog, whose structure has been reported [Zhang, Fang, Wu \& Ng (2004). Acta Cryst. E60, m135-m136].

Comment

The Cu atom in the centrosymmetric zwitterionic title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, (I), is linked to the pyridyl N atoms of two anionic groups and to four water molecules in an octahedral environment. The compound is isostructural with the Ni analog (Zhang et al., 2004a), whose structure has been described in detail.

(I)

The Mn , Co and Zn pyridylthioacetates have different formulations (Qin et al., 2004; Zhang et al., 2003, 2004b).

Experimental

Copper(II) chloride ($0.11 \mathrm{~g}, 0.8 \mathrm{mmol}$), (4-pyridylthio)acetic acid $(0.09 \mathrm{~g}, 0.6 \mathrm{mmol}), 4,4^{\prime}$-bipyridine ($0.06 \mathrm{~g}, 0.4 \mathrm{mmol}$) and water (7 ml) in a $4: 3: 2: 1500$ molar ratio were mixed and the pH of the solution was adjusted to 8 by adding $2 N$ sodium hydroxide. The mixture was transferred to a 15 ml Teflon-lined stainless-steel reactor, which was heated at 433 K for 108 h . Blue crystals of the title compound were recovered in about 60% yield.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=471.98$
Monoclinic, $P 2_{1} / a$
$a=7.481$ (1) \AA 。
$b=10.453$ (2) A
$c=12.123$ (2) \AA
$\beta=107.435(2)^{\circ}$
$V=904.4(3) \AA^{3}$
$Z=2$

$$
D_{x}=1.733 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1559
reflections
$\theta=2.7-26.4^{\circ}$
$\mu=1.49 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, blue
$0.20 \times 0.16 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-	1953 independent reflections
\quad detector diffractometer	1671 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.03$
Absorption correction: multi-scan	$\theta_{\max }=27.1^{\circ}$
$(S A D A B S ;$ Bruker, 2002 $)$	$h=-9 \rightarrow 9$
$T_{\min }=0.529, T_{\max }=0.929$	$k=-13 \rightarrow 13$
4867 measured reflections	$l=-10 \rightarrow 15$

Received 1 March 2004 Accepted 8 March 2004 Online 20 March 2004

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0727 P)^{2}\right. \\
& \quad+3.5831 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.89 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.186$
$S=1.20$
1953 reflections
136 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1 w$	$2.066(4)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.101(4)$
$\mathrm{Cu} 1-\mathrm{O} 2 w$	$2.044(4)$		
$\mathrm{O} 1 w-\mathrm{Cu} 1-\mathrm{O} 2 w$	$89.4(2)$	$\mathrm{O} 1 w-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$88.9(2)$
$\mathrm{O} 1 w-\mathrm{Cu} 1-\mathrm{O} 2 w^{\mathrm{i}}$	$90.6(2)$	$\mathrm{O} 2 w-\mathrm{Cu} 1-\mathrm{N} 1$	$87.3(2)$
$\mathrm{O} 1 w-\mathrm{Cu} 1-\mathrm{N} 1$	$91.2(2)$	$\mathrm{O} 2 w-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$92.7(2)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.85	1.94	$2.758(6)$	163
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.85	2.04	$2.840(6)$	157
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 2^{\mathrm{iv}}$	0.85	1.94	$2.738(6)$	156
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.85	1.93	$2.724(6)$	156
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.49	$3.395(6)$	163

Symmetry codes: (ii) $2-x, 1-y, 2-z$; (iii) $\frac{3}{2}-x, y-\frac{1}{2}, 2-z$; (iv) $x, y, z-1$.

C-bound H atoms were placed at calculated positions in the ridingmodel approximation $(\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H atoms and $\mathrm{C}-$ $\mathrm{H}=0.97 \AA$ for aliphatic H atoms); water H atoms were placed at chemically sensible positions by using the HYDROGEN option (Nardelli, 1999) in the $\operatorname{Win} G X$ suite (Farrugia, 1999), and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=$ 1.39 (1) \AA. For all H atoms, the $U_{\text {iso }}$ values were set at $1.2 U_{\text {eq }}$ of the parent atom. The structure solution was carried out using atomic

ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
coordinates taken from the isostructural Ni analog (Zhang et al., 2004a).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Shanxi Normal University and the University of Malaya for generously supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, J. (1999). Appl. Cryst. 32, 837-838.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Qin, S.-B., Ke, Y.-X., Lu, S.-M., Li, J.-M., Pei, H.-X. \& Du, W. X. (2004). J. Mol. Struct. In the press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2003). Acta Cryst. E59, m1194-m1195.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2004a). Acta Cryst. E60, m135-m136.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2004b). Acta Cryst. E60, m169-m170.

